Rule Evaluation Measures: A Unifying View
نویسندگان
چکیده
Numerous measures are used for performance evaluation in machine learning. In predictive knowledge discovery, the most frequently used measure is classification accuracy. With new tasks being addressed in knowledge discovery, new measures appear. In descriptive knowledge discovery, where induced rules are not primarily intended for classification, new measures used are novelty in clausal and subgroup discovery, and support and confidence in association rule learning. Additional measures are needed as many descriptive knowledge discovery tasks involve the induction of a large set of redundant rules and the problem is the ranking and filtering of the induced rule set. In this paper we develop a unifying view on some of the existing measures for predictive and descriptive induction. We provide a common terminology and notation by means of contingency tables. We demonstrate how to trade off these measures, by using what we call weighted relative accuracy. The paper furthermore demonstrates that many rule evaluation measures developed for predictive knowledge discovery can be adapted to descriptive knowledge discovery tasks.
منابع مشابه
NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملTowards a theory unifying implicative interestingness measures and critical values consideration in MGK
The present paper shows the possibility and the benefit to compute statistical freshold for the so-called Guillaume-Kenchaff interestingness measure MGK of association rule and compares it with other measures as Confidence, Lift and Lovinger’s one. Afterwards, it proposes a theory of normalized interestingness measure unifying a set of rule quality measures in a binary context and being surpris...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملReliability Measures Measurement under Rule-Based Fuzzy Logic Technique
In reliability theory, the reliability measures contend the very important and depreciative role for any system analysis. Measurement of reliability measures is not easy due to ambiguity and vagueness which exist within reliability parameters. It is also very difficult to incorporate a large amount of uncertainty in well-established methodologies and techniques. However, fuzzy logic provides an...
متن کاملA Graphical View of Distance Between Rankings: The Point and Area Measures
In Information Retrieval (IR), measuring the distance between rankings is a way for comparing evaluation measures and assess system rankings. In this paper, we present a variation of the Spearman foot rule which allows us to define two measures that have nice analytical and geometrical properties that can be effectively used to compare different rankings and to evaluate IR experiments. A Web ap...
متن کامل